Home Latest USF engineers invent ultra-fast manufacturing technology

USF engineers invent ultra-fast manufacturing technology

0
USF engineers invent ultra-fast manufacturing technology

[ad_1]

A team of engineers at the University of South Florida has invented new technology
that could forever change the manufacturing of wearable, electronic sensors. They’ve
figured out a way to speed up production without having to use polymer binders – the
industry standard in printing flexible sensors, which are often used to monitor vital
signs in health care settings.

Their technology, featured on the cover of the journal ACS Applied Materials & Interfaces,
prints electronic skin, or “e-skin,” by using corona discharge to create a strong
electric field between binder-free functional powders, such as graphene, and flexible,
non-conductive surfaces, such as medical tape. The electrostatic force used in Corona-Enabled
Electrostatic Printing enables a multitude of e-skin sensors to be printed within
sub-seconds, compared to the 20 minutes it takes with polymer binders, and doesn’t
require heat. E-skin is micrometer-thin, pliable technology that can be used to measure
things such as strain, temperature and sound.

Ying Zhong, assistant professor of mechanical engineering at USF, and her collaborator,
Long Wang at California Polytechnic State University, found that the printing technique
has broad applications, such as in health monitoring, prosthetics and robotics. Unlike
with polymer binders, there aren’t sizing limitations, making the technique a strong
candidate for the roll-to-roll manufacturing of large flexible sensors, which can
greatly reduce production costs.

“As a new, advanced manufacturing strategy, Corona-Enabled Electrostatic Printing
will potentially transform the cost structure for large-area and high-performance
electronics and enable versatile applications of flexible, functional systems,” Zhong
said. “The technique can help contribute to maintaining the U.S.’s leadership in advanced
manufacturing.”

Zhong recently received a $308,928 grant from the National Science Foundation to advance
her research, proving the patent-pending ultra-fast manufacturing technique can be
used to print materials beyond multifunctional e-skin. 

[ad_2]

Source link

LEAVE A REPLY

Please enter your comment!
Please enter your name here