Home Latest The importance of lake breach floods for valley incision on early Mars – Nature

The importance of lake breach floods for valley incision on early Mars – Nature

0
The importance of lake breach floods for valley incision on early Mars – Nature

[ad_1]

  • 1.

    Pieri, D. C. Martian valleys: morphology, distribution, age, and origin. Science 210, 895–897 (1980).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 2.

    Howard, A. D., Moore, J. M. & Irwin, R. P. An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. J. Geophys. Res. 110, E12S14 (2005).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Hynek, B. M., Beach, M. & Hoke, M. R. T. Updated global map of Martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res. 115, E09008 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 4.

    Cabrol, N. A. & Grin, E. A. Distribution, classification, and ages of Martian impact crater lakes. Icarus 142, 160–172 (1999).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Irwin, R. P., Howard, A. D., Craddock, R. A. & Moore, J. M. An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J. Geophys. Res. 110, E12S15 (2005).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Fassett, C. I. & Head, J. W. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 37–56 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    Irwin, R. P., Maxwell, T. A., Howard, A. D., Craddock, R. A. & Leverington, D. W. A large paleolake basin at the head of Ma’adim Vallis, Mars. Science 296, 2209–2212 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 8.

    Irwin, R. P., Howard, A. D. & Maxwell, T. A. Geomorphology of Ma’adim Vallis, Mars, and associated paleolake basins. J. Geophys. Res. 109, E12009 (2004).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Goudge, T. A., Fassett, C. I. & Mohrig, D. Incision of paleolake outlet canyons on Mars from overflow flooding. Geology 47, 7–10 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 10.

    Irwin, R. P. & Grant, J. A. in Megaflooding on Earth and Mars (eds Burr, D. M. et al.) 209–224 (Cambridge Univ. Press, 2009).

  • 11.

    Warner, N. H., Sowe, M., Gupta, S., Dumke, A. & Goddard, K. Fill and spill of giant lakes in the eastern Valles Marineris region of Mars. Geology 41, 675–678 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Goudge, T. A. & Fassett, C. I. Incision of Licus Vallis, Mars from multiple lake overflow floods. J. Geophys. Res. 123, 405–420 (2018).

    Article 

    Google Scholar
     

  • 13.

    Aharonson, O., Zuber, M. T., Rothman, D. H., Schorghofer, N. & Whipple, K. X. Drainage basins and channel incision on Mars. Proc. Natl Acad. Sci. 99, 1780–1783 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 14.

    Som, S. M., Montgomery, D. R. & Greenberg, H. M. Scaling relations for large Martian valleys. J. Geophys. Res. 114, E02005 (2009).

    ADS 

    Google Scholar
     

  • 15.

    Grau Galofre, A., Bahia, R. S., Jellinek, A. M., Whipple, K. X. & Gallo, R. Did martian valley networks substantially modify the landscape? Earth Planet. Sci. Lett. 547, 116482 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Grau Galofre, A., Jellinek, A. M. & Osinski, G. R. Valley formation on early Mars by subglacial and fluvial erosion. Nature Geosci. 13, 663–668 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Fassett, C. I. & Head, J. W. The timing of martian valley network activity: Constraints from buffered crater counting. Icarus 195, 61–89 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 18.

    Matsubara, Y., Howard, A. D. & Irwin, R. P. Constraints on the Noachian paleoclimate of the martian highlands from landscape evolution modeling. J. Geophys. Res. 123, 2958–2979 (2018).

    Article 

    Google Scholar
     

  • 19.

    Goudge, T. A., Fassett, C. I., Head, J. W., Mustard, J. F. & Aureli, K. L. Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy. Geology 44, 419–422 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 20.

    Stucky de Quay, G., Goudge, T. A. & Fassett, C. I. Precipitation and aridity constraints from paleolakes on early Mars. Geology 48, 1189–1193 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 21.

    O’Connor, J. E. & Baker, V. R. Magnitudes and implications of peak discharges from glacial Lake Missoula. Geol. Soc. Amer. Bull. 104, 267–279 (1992).

    ADS 
    Article 

    Google Scholar
     

  • 22.

    Gupta, S., Collier, J. S., Palmer-Felgate, A. & Potter, G. Catastrophic flooding origin of shelf valley systems in the English Channel. Nature 448, 342–345 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 23.

    Lamb, M. P. & Fonstad, M. A. Rapid formation of a modern bedrock canyon by a single flood event. Nature Geosci. 3, 477–481 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Tanaka, K. L. et al. Geologic Map of Mars US Geological Survey Scientific Investigations Map SIM 3292 http://pubs.usgs.gov/sim/3292 (2014).

  • 25.

    Luo, W., Pingel, T., Heo, J., Howard, A. & Jung, J. A progressive black top hat transformation algorithm for estimated valley volumes on Mars. Comput. Geosci. 75, 17–23 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 26.

    Luo, W., Cang, X. & Howard, A. D. New Martian valley network volume estimate consistent with ancient ocean and warm and wet climate. Nat. Comm. 8, 15766 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Smith, D. E. et al. Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 689–23,722 (2001).


    Google Scholar
     

  • 28.

    Mustard, J. F., Cooper, C. D. & Rifkin, M. K. Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature 412, 411–414 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Levy, J. S., Fassett, C. I., Head, J. W., Schwartz, C. & Watters, J. L. Martian water budget: geometric constraints on the volume of remnant, midlatitude debris-covered glaciers. J. Geophys. Res. 119, 2188–2196 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Rosenberg, E. N. & Head, J. W. Late Noachian fluvial erosion on Mars: cumulative water volumes required to carve the valley networks and grain size of bed-sediment. Planet. Space Sci. 117, 429–435 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 31.

    Wordsworth, R. D. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Stokes, M. & Mather, A. E. Tectonic origin and evolution of a transverse drainage: the Río Almanzora, Betic Cordillera, Southeast Spain. Geomorphology 50, 59–81 (2003).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Douglass, J. & Schmeeckle, M. Analogue modeling of transverse drainage mechanisms. Geomorphology 84, 22–43 (2007).

    ADS 
    Article 

    Google Scholar
     

  • 34.

    Hilgendorf, Z., Wells, G., Larson, P. H., Millett, J. & Kohout, M. From basins to rivers: understanding the revitalization and significance of top-down drainage integration mechanism in drainage basin evolution. Geomorphology 352, 107020 (2020).

    Article 

    Google Scholar
     

  • 35.

    Irwin, R. P., Craddock, R. A., Howard, A. D. & Flemming, H. L. Topographic influences on development of Martian valley networks. J. Geophys. Res. 116, E02005 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 36.

    Black, B. A. et al. Global drainage patterns and the origins of topographic relief on Earth, Mars, and Titan. Science 356, 727–731 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 37.

    Douglass, J. C. et al. Evidence for the overflow origin of the Grand Canyon. Geomorphology 369, 107361 (2020).

    Article 

    Google Scholar
     

  • 38.

    Geurts, A. H., Whittaker, A. C., Gawthorpe, R. L. & Cowie, P. A. Transient landscape and stratigraphic responses to drainage integration in the actively extending central Italian Apennines. Geomorphology 353, 107013 (2020).

    Article 

    Google Scholar
     

  • 39.

    Howard, A. D., Dietrich, W. E. & Seidl, M. A. Modeling fluvial erosion on regional to continental scales. J. Geophys. Res. 99, 971–12,986 (1994).


    Google Scholar
     

  • 40.

    Berlin, M. M. & Anderson, R. S. Modeling of knickpoint retreat on the Roan Plateau, western Colorado. J. Geophys. Res. 112, F03S06 (2007).

    ADS 
    Article 

    Google Scholar
     

  • 41.

    Fergason, R. L., Hare, T. M. & Laura, J. Mars MGS MOLA – MEX HRSC Blended DEM Global 200m v2. Astrogeology PDS Annex, US Geological Survey http://bit.ly/HRSC_MOLA_Blend_v0 (2018).

  • 42.

    Neukum, G. et al. HRSC: the High Resolution Stereo Camera of Mars Express. European Space Agency Special Publication ESA SP-1240, 17–35 (2004).

  • 43.

    Christensen, P. R. et al. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 110, 85–130 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 44.

    Edwards, C. S. et al. Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. J. Geophys. Res. 116, E10008 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 45.

    Malin, M. C. & Edgett, K. S. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 2330–2335 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 46.

    Harrison, T. N., Osinski, G. R., Tornabene, L. L. & Jones, E. Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera and implications for their formation. Icarus 252, 236–254 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 47.

    Irwin, R. P., Watters, T. R., Howard, A. D. & Zimbelman, J. R. Sedimentary resurfacing and fretted terrain development along the crustal dichotomy boundary, Aeolis Mensae, Mars. J. Geophys. Res. 109, E09011 (2004).

    ADS 

    Google Scholar
     

  • 48.

    Irwin, R. P. & Watters, T. R. Geology of the Martian crustal dichotomy boundary: Age, modifications, and implications for modeling efforts. J. Geophys. Res. 115, E11006 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 49.

    Baker, V. R. & Milton, D. J. Erosion by catastrophic floods on Mars and Earth. Icarus 23, 27–41 (1974).

    ADS 
    Article 

    Google Scholar
     

  • 50.

    Carr, M. H. Formation of martian flood features by release of water from confined aquifers. J. Geophys. Res. 84, 2995–3007 (1979).

    ADS 
    Article 

    Google Scholar
     

  • 51.

    Coleman, N. M. & Baker, V. R. in Megaflooding on Earth and Mars (eds Burr, D. M. et al.) 172–193 (Cambridge Univ. Press, 2009).

  • 52.

    Mest, S. C. & Crown, D. A. Geology of the Reull Vallis region, Mars. Icarus 153, 89–110 (2001).

    ADS 
    Article 

    Google Scholar
     

  • 53.

    Kreslavsky, M. A. & Head, J. W. Kilometer-scale roughness of Mars: results from MOLA data analysis. J. Geophys. Res. 105, 695–26,711 (2000).


    Google Scholar
     

  • 54.

    Hoke, M. R. T., Hynek, B. M. & Tucker, G. E. Formation timescales of large Martian valley networks. Earth Planet. Sci. Lett. 312, 1–12 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 55.

    Luo, W. & Stepinski, T. F. Computer-generated global map of valley networks on Mars. J. Geophys. Res. 114, E11010 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 56.

    Malin, M. C. et al. Context Camera investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. 112, E05S04 (2007).

    Article 

    Google Scholar
     

  • 57.

    Shean, D. E. et al. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS J. Photogramm. Remote Sens. 116, 101–117 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 58.

    Beyer, R. A., Alexandrov, O. & McMichael, S. The Ames Stereo Pipeline: NASA’s open source software for deriving and processing terrain data. Earth Space Sci. 5, 537–548 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 59.

    Dickson, J. L., Kerber, L. A., Fassett, C. I. & Ehlmann, B. L. A global, blended CTX mosaic of Mars with vectorized seam mapping: a new mosaicking pipeline using principles of non-destructive image editing. In 49th Lunar and Planetary Science Conference 2480 (2018).

  • [ad_2]

    Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here