Home Latest Climate impacts on global agriculture emerge earlier in new generation of climate and crop models – Nature Food

Climate impacts on global agriculture emerge earlier in new generation of climate and crop models – Nature Food

0
Climate impacts on global agriculture emerge earlier in new generation of climate and crop models – Nature Food

[ad_1]

  • 1.

    Mbow, C. et al. in Special Report on Climate Change and Land (eds Shukla, P. R. et al.) 437–550 (IPCC, 2019).

  • 2.

    Asseng, S. et al. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change 3, 827–832 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Wang, E. et al. The uncertainty of crop yield projections is reduced by improved temperature response functions. Nat. Plants 3, 17102 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Rosenzweig, C. et al. The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agric. For. Meteorol. 170, 166–182 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP, 2021); https://www.isimip.org/

  • 6.

    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a Global Gridded Crop Model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 8.

    Meehl, G. A. et al. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 6, eaba1981 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 9.

    O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 10.

    Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12, 3055–3070 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Hawkins, E. et al. Observed emergence of the climate change signal: from the familiar to the unknown. Geophys. Res. Lett. 47, e2019GL086259 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Kirtman, B. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 953–1028 (IPCC, Cambridge Univ. Press, 2013).

  • 14.

    Rojas, M., Lambert, F., Ramirez-Villegas, J. & Challinor, A. J. Emergence of robust precipitation changes across crop production areas in the 21st century. Proc. Natl Acad. Sci. USA 116, 6673–6678 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 15.

    Raymond, C., Matthews, T. & Horton, R. M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 6, eaaw1838 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 16.

    Park, C. E. et al. Keeping global warming within 1.5 °C constrains emergence of aridification. Nat. Clim. Change https://doi.org/10.1038/s41558-017-0034-4 (2018).

  • 17.

    Liu, B. et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Change 6, 1130–1136 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 18.

    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1701762114 (2017).

  • 19.

    Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 20.

    Toreti, A. et al. Narrowing uncertainties in the effects of elevated CO2 on crops. Nat. Food 1, 775–782 (2020).

    Article 

    Google Scholar
     

  • 21.

    Ahmed, M. et al. Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Sci. Rep. 9, 7813 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 22.

    Leakey, A. D. B., Bishop, K. A. & Ainsworth, E. A. A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2. Curr. Opin. Plant Biol. https://doi.org/10.1016/j.pbi.2012.01.009 (2012).

  • 23.

    Kimball, B. A. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr. Opin. Plant Biol. https://doi.org/10.1016/j.pbi.2016.03.006 (2016).

  • 24.

    Zabel, F. et al. Large potential for crop production adaptation depends on available future varieties. Glob. Change Biol. https://doi.org/10.1111/gcb.15649 (2021).

  • 25.

    Ray, D. K. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148 (2019).

  • 26.

    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 27.

    Ahmad, S. et al. Climate warming and management impact on the change of phenology of the rice–wheat cropping system in Punjab, Pakistan. Field Crops Res. 230, 46–61 (2019).

    Article 

    Google Scholar
     

  • 28.

    Porter, J. R. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 485–533 (IPCC, Cambridge Univ. Press, 2014).

  • 29.

    Levis, S., Badger, A., Drewniak, B., Nevison, C. & Ren, X. CLMcrop yields and water requirements: avoided impacts by choosing RCP 4.5 over 8.5. Clim. Change 146, 501–515 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 30.

    Falconnier, G. N. et al. Modelling climate change impacts on maize yields under low nitrogen input conditions in sub‐Saharan Africa. Glob. Change Biol. 26, 5942–5964 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 31.

    O’Neill, B. C. et al. IPCC reasons for concern regarding climate change risks. Nat. Clim. Change 7, 28–37 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Li, Y., Guan, K., Schnitkey, G. D., DeLucia, E. & Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Change Biol. 25, 2325–2337 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Zhu, P., Zhuang, Q., Archontoulis, S. V., Bernacchi, C. & Müller, C. Dissecting the nonlinear response of maize yield to high temperature stress with model-data integration. Glob. Change Biol. 25, 2470–2484 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 34.

    Iizumi, T. et al. Responses of crop yield growth to global temperature and socioeconomic changes. Sci. Rep. 7, 7800 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 35.

    Sherwood, S. C. et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 58, e2019RG000678 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 36.

    Nijsse, F. J. M. M., Cox, P. M. & Williamson, M. S. Emergent constraints on transient climate response (TCR) and equilibrium climate sensitivity (ECS) from historical warming in CMIP5 and CMIP6 models. Earth Syst. Dyn. 11, 737–750 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 37.

    Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 38.

    Tokarska, K. B. et al. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 39.

    Fan, X., Miao, C., Duan, Q., Shen, C. & Wu, Y. The performance of CMIP6 versus CMIP5 in simulating temperature extremes over the global land surface. J. Geophys. Res. Atmos. 125, e2020JD033031 (2020).

    ADS 

    Google Scholar
     

  • 40.

    Xin, X., Wu, T., Zhang, J., Yao, J. & Fang, Y. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Climatol. 40, 6423–6440 (2020).

    Article 

    Google Scholar
     

  • 41.

    Ridder, N. N., Pitman, A. J. & Ukkola, A. M. Do CMIP6 climate models simulate global or regional compound events skilfully? Geophys. Res. Lett. https://doi.org/10.1029/2020gl091152 (2020).

  • 42.

    Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 43.

    Von Bloh, W. et al. Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0). Geosci. Model Dev. 11, 2789–2812 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 44.

    Jägermeyr, J. & Frieler, K. Spatial variations in crop growing seasons pivotal to reproduce global fluctuations in maize and wheat yields. Sci. Adv. 4, eaat4517 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 45.

    Müller, C. et al. Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios. Environ. Res. Lett. 16, 034040 (2021).

    ADS 
    Article 

    Google Scholar
     

  • 46.

    Franke, J. A. et al. The GGCMI Phase 2 emulators: Global Gridded Crop Model responses to changes in CO2, temperature, water, and nitrogen (version 1.0). Geosci. Model Dev. 13, 2315–2336 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 47.

    Allen, L. H. et al. Fluctuations of CO2 in free-air CO2 enrichment (FACE) depress plant photosynthesis, growth, and yield. Agric. For. Meteorol. 284, 107899 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 48.

    Durand, J. L. et al. How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield? Eur. J. Agron. https://doi.org/10.1016/j.eja.2017.01.002 (2018).

  • 49.

    Myers, S. S. et al. Increasing CO2 threatens human nutrition. Nature 510, 139–142 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 50.

    Zhu, C. et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 4, eaaq1012 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 51.

    Rising, J. & Devineni, N. Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5. Nat. Commun. 11, 4991 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 52.

    Asseng, S. et al. Climate Change impact and adaptation for wheat protein. Glob. Change Biol. 25, 155–173 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 53.

    Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 54.

    Giorgi, F. & Bi, X. Time of emergence (TOE) of GHG-forced precipitation change hot-spots. Geophys. Res. Lett. 36, L06709 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 55.

    Lange, S. WFDE5 Over Land Merged with ERA5 Over the Ocean (W5E5). V. 1.0 (GFZ Data Services, 2019); https://doi.org/10.5880/pik.2019.023

  • 56.

    Cucchi, M. et al. WFDE5: bias-adjusted ERA5 reanalysis data for impact studies. Earth Syst. Sci. Data 12, 2097–2120 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 57.

    Ruane, A. C. et al. Strong regional influence of climatic forcing datasets on global crop model ensembles. Agric. For. Meteorol. 300, 108313 (2021).

    ADS 
    Article 

    Google Scholar
     

  • 58.

    FAOSTAT (United Nation’s Food and Agricultural Organization, 2019); http://www.fao.org/faostat/

  • 59.

    Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Global Biogeochem. Cycles 24, GB1011 (2010).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 60.

    Siebert, S. et al. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 19, 1521–1545 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 61.

    Heinke, J., Müller, C., Mueller, N. D. & Jägermeyr, J. N application rates from mineral fertiliser and manure Zenodo https://doi.org/10.5281/zenodo.4954582 (2021).

  • 62.

    Zhang, B. et al. Global manure nitrogen production and application in cropland during 1860–2014: a 5 arcmin gridded global dataset for Earth system modeling. Earth Syst. Sci. Data 9, 667–678 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 63.

    Tian, H. et al. The global N2O model intercomparison project. Bull. Am. Meteorol. Soc. 99, 1231–1251 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 64.

    Nachtergaele, F. et al. Harmonized World Soil Database (version 1.2) (FAO and IIASA, 2012).

  • 65.

    Shangguan, W., Dai, Y., Duan, Q., Liu, B. & Yuan, H. A global soil data set for Earth system modeling. J. Adv. Model. Earth Syst. 6, 249–263 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 66.

    Hengl, T. et al. SoilGrids1km—global soil information based on automated mapping. PLoS ONE 9, e114788 (2014).

  • 67.

    Müller, C. et al. Global Gridded Crop Model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 10, 1403–1422 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 68.

    Franke, J. A. et al. The GGCMI Phase 2 experiment: Global Gridded Crop Model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0). Geosci. Model Dev. 13, 2315–2336 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 69.

    Elliott, J. et al. The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0). Geosci. Model Dev. 8, 261–277 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 70.

    Ruane, A. C. et al. Multi-wheat-model ensemble responses to interannual climate variability. Environ. Model. Softw. 81, 86–101 (2016).

    Article 

    Google Scholar
     

  • 71.

    Wang, R., Bowling, L. C. & Cherkauer, K. A. Estimation of the effects of climate variability on crop yield in the Midwest USA. Agric. For. Meteorol. 216, 141–156 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 72.

    Folberth, C., Gaiser, T., Abbaspour, K. C., Schulin, R. & Yang, H. Regionalization of a large-scale crop growth model for sub-Saharan Africa: model setup, evaluation, and estimation of maize yields. Agric. Ecosyst. Environ. 151, 21–33 (2012).

    Article 

    Google Scholar
     

  • 73.

    Global Spatially-Disaggregated Crop Production Statistics Data for 2010 Version 1.0. Harvard Dataverse, V1 (International Food Policy Research Institute, 2019); https://doi.org/10.7910/DVN/PRFF8V

  • 74.

    Jägermeyr, J. et al. A regional nuclear conflict would compromise global food security. Proc. Natl Acad. Sci. USA 117, 7071–7081 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 75.

    Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • [ad_2]

    Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here