[ad_1]
Pieri, D. C. Martian valleys: morphology, distribution, age, and origin. Science 210, 895–897 (1980).
Howard, A. D., Moore, J. M. & Irwin, R. P. An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. J. Geophys. Res. 110, E12S14 (2005).
Hynek, B. M., Beach, M. & Hoke, M. R. T. Updated global map of Martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res. 115, E09008 (2010).
Cabrol, N. A. & Grin, E. A. Distribution, classification, and ages of Martian impact crater lakes. Icarus 142, 160–172 (1999).
Irwin, R. P., Howard, A. D., Craddock, R. A. & Moore, J. M. An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J. Geophys. Res. 110, E12S15 (2005).
Fassett, C. I. & Head, J. W. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 37–56 (2008).
Irwin, R. P., Maxwell, T. A., Howard, A. D., Craddock, R. A. & Leverington, D. W. A large paleolake basin at the head of Ma’adim Vallis, Mars. Science 296, 2209–2212 (2002).
Irwin, R. P., Howard, A. D. & Maxwell, T. A. Geomorphology of Ma’adim Vallis, Mars, and associated paleolake basins. J. Geophys. Res. 109, E12009 (2004).
Goudge, T. A., Fassett, C. I. & Mohrig, D. Incision of paleolake outlet canyons on Mars from overflow flooding. Geology 47, 7–10 (2019).
Irwin, R. P. & Grant, J. A. in Megaflooding on Earth and Mars (eds Burr, D. M. et al.) 209–224 (Cambridge Univ. Press, 2009).
Warner, N. H., Sowe, M., Gupta, S., Dumke, A. & Goddard, K. Fill and spill of giant lakes in the eastern Valles Marineris region of Mars. Geology 41, 675–678 (2013).
Goudge, T. A. & Fassett, C. I. Incision of Licus Vallis, Mars from multiple lake overflow floods. J. Geophys. Res. 123, 405–420 (2018).
Aharonson, O., Zuber, M. T., Rothman, D. H., Schorghofer, N. & Whipple, K. X. Drainage basins and channel incision on Mars. Proc. Natl Acad. Sci. 99, 1780–1783 (2002).
Som, S. M., Montgomery, D. R. & Greenberg, H. M. Scaling relations for large Martian valleys. J. Geophys. Res. 114, E02005 (2009).
Grau Galofre, A., Bahia, R. S., Jellinek, A. M., Whipple, K. X. & Gallo, R. Did martian valley networks substantially modify the landscape? Earth Planet. Sci. Lett. 547, 116482 (2020).
Grau Galofre, A., Jellinek, A. M. & Osinski, G. R. Valley formation on early Mars by subglacial and fluvial erosion. Nature Geosci. 13, 663–668 (2020).
Fassett, C. I. & Head, J. W. The timing of martian valley network activity: Constraints from buffered crater counting. Icarus 195, 61–89 (2008).
Matsubara, Y., Howard, A. D. & Irwin, R. P. Constraints on the Noachian paleoclimate of the martian highlands from landscape evolution modeling. J. Geophys. Res. 123, 2958–2979 (2018).
Goudge, T. A., Fassett, C. I., Head, J. W., Mustard, J. F. & Aureli, K. L. Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy. Geology 44, 419–422 (2016).
Stucky de Quay, G., Goudge, T. A. & Fassett, C. I. Precipitation and aridity constraints from paleolakes on early Mars. Geology 48, 1189–1193 (2020).
O’Connor, J. E. & Baker, V. R. Magnitudes and implications of peak discharges from glacial Lake Missoula. Geol. Soc. Amer. Bull. 104, 267–279 (1992).
Gupta, S., Collier, J. S., Palmer-Felgate, A. & Potter, G. Catastrophic flooding origin of shelf valley systems in the English Channel. Nature 448, 342–345 (2007).
Lamb, M. P. & Fonstad, M. A. Rapid formation of a modern bedrock canyon by a single flood event. Nature Geosci. 3, 477–481 (2010).
Tanaka, K. L. et al. Geologic Map of Mars US Geological Survey Scientific Investigations Map SIM 3292 http://pubs.usgs.gov/sim/3292 (2014).
Luo, W., Pingel, T., Heo, J., Howard, A. & Jung, J. A progressive black top hat transformation algorithm for estimated valley volumes on Mars. Comput. Geosci. 75, 17–23 (2015).
Luo, W., Cang, X. & Howard, A. D. New Martian valley network volume estimate consistent with ancient ocean and warm and wet climate. Nat. Comm. 8, 15766 (2017).
Smith, D. E. et al. Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 689–23,722 (2001).
Mustard, J. F., Cooper, C. D. & Rifkin, M. K. Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature 412, 411–414 (2001).
Levy, J. S., Fassett, C. I., Head, J. W., Schwartz, C. & Watters, J. L. Martian water budget: geometric constraints on the volume of remnant, midlatitude debris-covered glaciers. J. Geophys. Res. 119, 2188–2196 (2014).
Rosenberg, E. N. & Head, J. W. Late Noachian fluvial erosion on Mars: cumulative water volumes required to carve the valley networks and grain size of bed-sediment. Planet. Space Sci. 117, 429–435 (2015).
Wordsworth, R. D. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).
Stokes, M. & Mather, A. E. Tectonic origin and evolution of a transverse drainage: the Río Almanzora, Betic Cordillera, Southeast Spain. Geomorphology 50, 59–81 (2003).
Douglass, J. & Schmeeckle, M. Analogue modeling of transverse drainage mechanisms. Geomorphology 84, 22–43 (2007).
Hilgendorf, Z., Wells, G., Larson, P. H., Millett, J. & Kohout, M. From basins to rivers: understanding the revitalization and significance of top-down drainage integration mechanism in drainage basin evolution. Geomorphology 352, 107020 (2020).
Irwin, R. P., Craddock, R. A., Howard, A. D. & Flemming, H. L. Topographic influences on development of Martian valley networks. J. Geophys. Res. 116, E02005 (2011).
Black, B. A. et al. Global drainage patterns and the origins of topographic relief on Earth, Mars, and Titan. Science 356, 727–731 (2017).
Douglass, J. C. et al. Evidence for the overflow origin of the Grand Canyon. Geomorphology 369, 107361 (2020).
Geurts, A. H., Whittaker, A. C., Gawthorpe, R. L. & Cowie, P. A. Transient landscape and stratigraphic responses to drainage integration in the actively extending central Italian Apennines. Geomorphology 353, 107013 (2020).
Howard, A. D., Dietrich, W. E. & Seidl, M. A. Modeling fluvial erosion on regional to continental scales. J. Geophys. Res. 99, 971–12,986 (1994).
Berlin, M. M. & Anderson, R. S. Modeling of knickpoint retreat on the Roan Plateau, western Colorado. J. Geophys. Res. 112, F03S06 (2007).
Fergason, R. L., Hare, T. M. & Laura, J. Mars MGS MOLA – MEX HRSC Blended DEM Global 200m v2. Astrogeology PDS Annex, US Geological Survey http://bit.ly/HRSC_MOLA_Blend_v0 (2018).
Neukum, G. et al. HRSC: the High Resolution Stereo Camera of Mars Express. European Space Agency Special Publication ESA SP-1240, 17–35 (2004).
Christensen, P. R. et al. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 110, 85–130 (2004).
Edwards, C. S. et al. Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. J. Geophys. Res. 116, E10008 (2011).
Malin, M. C. & Edgett, K. S. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 2330–2335 (2000).
Harrison, T. N., Osinski, G. R., Tornabene, L. L. & Jones, E. Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera and implications for their formation. Icarus 252, 236–254 (2015).
Irwin, R. P., Watters, T. R., Howard, A. D. & Zimbelman, J. R. Sedimentary resurfacing and fretted terrain development along the crustal dichotomy boundary, Aeolis Mensae, Mars. J. Geophys. Res. 109, E09011 (2004).
Irwin, R. P. & Watters, T. R. Geology of the Martian crustal dichotomy boundary: Age, modifications, and implications for modeling efforts. J. Geophys. Res. 115, E11006 (2010).
Baker, V. R. & Milton, D. J. Erosion by catastrophic floods on Mars and Earth. Icarus 23, 27–41 (1974).
Carr, M. H. Formation of martian flood features by release of water from confined aquifers. J. Geophys. Res. 84, 2995–3007 (1979).
Coleman, N. M. & Baker, V. R. in Megaflooding on Earth and Mars (eds Burr, D. M. et al.) 172–193 (Cambridge Univ. Press, 2009).
Mest, S. C. & Crown, D. A. Geology of the Reull Vallis region, Mars. Icarus 153, 89–110 (2001).
Kreslavsky, M. A. & Head, J. W. Kilometer-scale roughness of Mars: results from MOLA data analysis. J. Geophys. Res. 105, 695–26,711 (2000).
Hoke, M. R. T., Hynek, B. M. & Tucker, G. E. Formation timescales of large Martian valley networks. Earth Planet. Sci. Lett. 312, 1–12 (2011).
Luo, W. & Stepinski, T. F. Computer-generated global map of valley networks on Mars. J. Geophys. Res. 114, E11010 (2009).
Malin, M. C. et al. Context Camera investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. 112, E05S04 (2007).
Shean, D. E. et al. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS J. Photogramm. Remote Sens. 116, 101–117 (2016).
Beyer, R. A., Alexandrov, O. & McMichael, S. The Ames Stereo Pipeline: NASA’s open source software for deriving and processing terrain data. Earth Space Sci. 5, 537–548 (2018).
Dickson, J. L., Kerber, L. A., Fassett, C. I. & Ehlmann, B. L. A global, blended CTX mosaic of Mars with vectorized seam mapping: a new mosaicking pipeline using principles of non-destructive image editing. In 49th Lunar and Planetary Science Conference 2480 (2018).
[ad_2]
Source link