Home Latest Time in schizophrenia: a link between psychopathology, psychophysics and technology – Translational Psychiatry

Time in schizophrenia: a link between psychopathology, psychophysics and technology – Translational Psychiatry

0
Time in schizophrenia: a link between psychopathology, psychophysics and technology – Translational Psychiatry

[ad_1]

  • Allman MJ, Pelphrey KA, Meck WH. Developmental neuroscience of time and number: implications for autism and other neurodevelopmental disabilities. Front Integr Neurosci. 2012;6:7.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Droit-Volet S. Time perception in children: a neurodevelopmental approach. Neuropsychologia. 2013;51:220–34.

    PubMed 
    Article 

    Google Scholar
     

  • Pouthas V, Droit S, Jacquet A-Y. Temporal experiences and time knowledge in infancy and early childhood. Time Soc. 1993;2:199–218.

    Article 

    Google Scholar
     

  • Brackbill Y, Fitzgerald HE. Stereotype temporal conditioning in infants. Psychophysiology. 1972;9:569–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brannon EM, Roussel LW, Meck WH, Woldorff M. Timing in the baby brain. Brain Res Cogn Brain Res. 2004;21:227–33.

    PubMed 
    Article 

    Google Scholar
     

  • Ciullo V, Spalletta G, Caltagirone C, Jorge RE, Piras F. Explicit time deficit in Schizophrenia: systematic review and meta-analysis indicate it is primary and not domain specific. Schizophr Bull. 2016;42:505–18.

    PubMed 
    Article 

    Google Scholar
     

  • Bonnot O, de Montalembert M, Kermarrec S, Botbol M, Walter M, Coulon N. Are impairments of time perception in schizophrenia a neglected phenomenon. J Physiol Paris. 2011;105:164–9.

    PubMed 
    Article 

    Google Scholar
     

  • Andreasen NC, Nopoulos P, O’Leary DS, Miller DD, Wassink T, Flaum M. Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biol Psychiatry. 1999;46:908–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wittmann M. The inner sense of time: how the brain creates a representation of duration. Nat Rev Neurosci. 2013;14:217–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wittmann M, van Wassenhove V. Neural mechanisms and the interplay of emotion, cognition and embodiment. London: The Royal Society London; 2009.

  • Creelman CD. Human discrimination of auditory duration. J Acoustical Soc Am. 1962;34:582–93.

    Article 

    Google Scholar
     

  • Treisman M. Temporal discrimination and the indifference interval. Implications for a model of the “internal clock”. Psychol Monogr. 1963;77:1–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gibbon J, Church RM, Meck WH. Scalar timing in memory. Ann N. Y Acad Sci. 1984;423:52–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Buonomano DV, Mauk MD. Neural network model of the cerebellum: temporal discrimination and the timing of motor responses. Neural Comput. 1994;6:38–55.

    Article 

    Google Scholar
     

  • Buonomano DV. Decoding temporal information: a model based on short-term synaptic plasticity. J Neurosci. 2000;20:1129–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mauk MD, Buonomano DV. The neural basis of temporal processing. Annu Rev Neurosci. 2004;27:307–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Biondi M, Pasquini M, Picardi A. Dimensional psychopathology. Springer; 2018.

  • Ivry RB, Schlerf JE. Dedicated and intrinsic models of time perception. Trends Cogn Sci. 2008;12:273–80.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Paton JJ, Buonomano DV. The neural basis of timing: distributed mechanisms for diverse functions. Neuron. 2018;98:687–705. https://doi.org/10.1016/j.neuron.2018.03.045.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis PA, Miall RC. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol. 2003;13:250–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ivry RB. The representation of temporal information in perception and motor control. Curr Opin Neurobiol. 1996;6:851–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee KH, Egleston PN, Brown WH, Gregory AN, Barker AT, Woodruff PW. The role of the cerebellum in subsecond time perception: evidence from repetitive transcranial magnetic stimulation. J Cogn Neurosci. 2007;19:147–57.

    PubMed 
    Article 

    Google Scholar
     

  • Lewis PA, Miall RC. Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia. 2003;41:1583–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tregellas JR, Davalos DB, Rojas DC. Effect of task difficulty on the functional anatomy of temporal processing. Neuroimage. 2006;32:307–15.

    PubMed 
    Article 

    Google Scholar
     

  • Jones CR, Rosenkranz K, Rothwell JC, Jahanshahi M. The right dorsolateral prefrontal cortex is essential in time reproduction: an investigation with repetitive transcranial magnetic stimulation. Exp Brain Res. 2004;158:366–72.

    PubMed 
    Article 

    Google Scholar
     

  • Piras F, Coull JT. Implicit, predictive timing draws upon the same scalar representation of time as explicit timing. PLoS One. 2011;6:e18203.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Coull J, Nobre A. Dissociating explicit timing from temporal expectation with fMRI. Curr Opin Neurobiol. 2008;18:137–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Giersch A, Lalanne L, Isope P. Implicit timing as the missing link between neurobiological and self disorders in Schizophrenia. Front Hum Neurosci. 2016;10:303.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Carlson VR, Feinberg I. Individual variations in time judgment and the concept of an internal clock. J Exp Psychol. 1968;77:631–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Clausen J. An evaluation of experimental methods of time judgment. J Exp Psychol. 1950;40:756–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • van Eijk RL, Kohlrausch A, Juola JF, van de Par S. Audiovisual synchrony and temporal order judgments: effects of experimental method and stimulus type. Percept Psychophys. 2008;70:955–68.

    PubMed 
    Article 

    Google Scholar
     

  • Shams L, Kamitani Y, Shimojo S. Visual illusion induced by sound. Brain Res Cogn Brain Res. 2002;14:147–52.

    PubMed 
    Article 

    Google Scholar
     

  • Association AP. Diagnostic and statistical manual of mental disorders (DSM-5®). USA: American Psychiatric Pub; 2013.

  • Escelsior A, Belvederi Murri M, Calcagno P, Cervetti A, Caruso R, Croce E, et al. Effectiveness of cerebellar circuitry modulation in Schizophrenia: a systematic review. J Nerv Ment Dis. 2019;207:977–86.

    PubMed 

    Google Scholar
     

  • Heinrichs RW. The primacy of cognition in schizophrenia. Am Psychol. 2005;60:229–42.

    PubMed 
    Article 

    Google Scholar
     

  • Elvevag B, Brown GD, McCormack T, Vousden JI, Goldberg TE. Identification of tone duration, line length, and letter position: an experimental approach to timing and working memory deficits in schizophrenia. J Abnorm Psychol. 2004;113:509–21.

    PubMed 
    Article 

    Google Scholar
     

  • Stanghellini G, Ballerini M, Presenza S, Mancini M, Raballo A, Blasi S, et al. Psychopathology of lived time: abnormal time experience in persons with Schizophrenia. Schizophr Bull. 2016;42:45–55.

    PubMed 

    Google Scholar
     

  • Northoff G, Stanghellini G. How to link brain and experience? Spatiotemporal psychopathology of the lived body. Front Hum Neurosci. 2016;10:76.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fuchs T. The temporal structure of intentionality and its disturbance in schizophrenia. Psychopathology. 2007;40:229–35.

    PubMed 
    Article 

    Google Scholar
     

  • Lewis A. The experience of time in mental disorder. Proc R Soc Med. 1932;25:611–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freedman BJ. The subjective experience of perceptual and cognitive disturbances in schizophrenia. A review of autobiographical accounts. Arch Gen Psychiatry. 1974;30:333–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Parnas J, Henriksen MG. Disordered self in the schizophrenia spectrum: a clinical and research perspective. Harv Rev Psychiatry. 2014;22:251–65.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Parnas J. The core Gestalt of schizophrenia. World Psychiatry. 2012;11:67–69.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martin B, Wittmann M, Franck N, Cermolacce M, Berna F, Giersch A. Temporal structure of consciousness and minimal self in schizophrenia. Front Psychol. 2014;5:1175.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zahavi D. Self and other: exploring subjectivity, empathy, and shame USA: Oxford University Press; 2014.

  • Fuchs T, Pallagrosi M. Dimensional psychopathology. Springer; 2018. 287–300.

  • Thoenes S, Oberfeld D. Meta-analysis of time perception and temporal processing in schizophrenia: differential effects on precision and accuracy. Clin Psychol Rev. 2017;54:44–64.

    PubMed 
    Article 

    Google Scholar
     

  • Ciullo V, Piras F, Vecchio D, Banaj N, Coull JT, Spalletta G. Predictive timing disturbance is a precise marker of schizophrenia. Schizophrenia Res: Cognition. 2018;12:42–49.


    Google Scholar
     

  • Zhou HY, Cai XL, Weigl M, Bang P, Cheung E, Chan R. Multisensory temporal binding window in autism spectrum disorders and schizophrenia spectrum disorders: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2018;86:66–76.

    PubMed 
    Article 

    Google Scholar
     

  • Dixon NF, Spitz L. The detection of auditory visual desynchrony. Perception. 1980;9:719–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Di Cosmo G, Costantini M, Ambrosini E, Salone A, Martinotti G, Corbo M, et al. Body-environment integration: Temporal processing of tactile and auditory inputs along the schizophrenia continuum. J Psychiatr Res. 2021;134:208–14.

    PubMed 
    Article 

    Google Scholar
     

  • Foucher JR, Lacambre M, Pham BT, Giersch A, Elliott MA. Low time resolution in schizophrenia Lengthened windows of simultaneity for visual, auditory and bimodal stimuli. Schizophr Res. 2007;97:118–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stevenson RA, Park S, Cochran C, McIntosh LG, Noel JP, Barense MD, et al. The associations between multisensory temporal processing and symptoms of schizophrenia. Schizophr Res. 2017;179:97–103.

    PubMed 
    Article 

    Google Scholar
     

  • Di Cosmo G, Costantini M, Ambrosini E, Salone A, Martinotti G, Corbo M, et al. Body-Environment integration: temporal processing of tactile and auditory inputs along the schizophrenia continuum. J Psychiatr Res. 2020;134:208–14.

    PubMed 
    Article 

    Google Scholar
     

  • Martin B, Giersch A, Huron C, van Wassenhove V. Temporal event structure and timing in schizophrenia: preserved binding in a longer “now”. Neuropsychologia. 2013;51:358–71.

    PubMed 
    Article 

    Google Scholar
     

  • Haß K, Sinke C, Reese T, Roy M, Wiswede D, Dillo W, et al. Enlarged temporal integration window in schizophrenia indicated by the double-flash illusion. Cogn Neuropsychiatry. 2017;22:145–58.

    PubMed 
    Article 

    Google Scholar
     

  • Lalanne L, Van Assche M, Wang W, Giersch A. Looking forward: an impaired ability in patients with schizophrenia. Neuropsychologia. 2012;50:2736–44.

    PubMed 
    Article 

    Google Scholar
     

  • Exner C, Weniger G, Schmidt-Samoa C, Irle E. Reduced size of the pre-supplementary motor cortex and impaired motor sequence learning in first-episode schizophrenia. Schizophr Res. 2006;84:386–96.

    PubMed 
    Article 

    Google Scholar
     

  • Posada A, Franck N. Use and automation of a rule in schizophrenia. Psychiatry Res. 2002;109:289–96.

    PubMed 
    Article 

    Google Scholar
     

  • Simon JR. Reactions toward the source of stimulation. J Exp Psychol. 1969;81:174–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ueda N, Maruo K, Sumiyoshi T. Positive symptoms and time perception in schizophrenia: a meta-analysis. Schizophr Res Cogn. 2018;13:3–6.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Coy AL, Hutton SB. The influence of hallucination proneness and social threat on time perception. Cogn Neuropsychiatry. 2013;18:463–76.

    PubMed 
    Article 

    Google Scholar
     

  • Lee K-H, Dixon JK, Spence SA, Woodruff PW. Time perception dysfunction in psychometric schizotypy. Personal Individ Differ. 2006;40:1363–73.

    Article 

    Google Scholar
     

  • Penney TB, Meck WH, Roberts SA, Gibbon J, Erlenmeyer-Kimling L. Interval-timing deficits in individuals at high risk for schizophrenia. Brain Cogn. 2005;58:109–18.

    PubMed 
    Article 

    Google Scholar
     

  • Ferri F, Venskus A, Fotia F, Cooke J, Romei V. Higher proneness to multisensory illusions is driven by reduced temporal sensitivity in people with high schizotypal traits. Conscious Cogn. 2018;65:263–70.

    PubMed 
    Article 

    Google Scholar
     

  • Ferri F, Nikolova YS, Perrucci MG, Costantini M, Ferretti A, Gatta V, et al. A neural “tuning curve” for multisensory experience and cognitive-perceptual Schizotypy. Schizophr Bull. 2017;43:801–13.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Meredith MA, Stein BE. Spatial factors determine the activity of multisensory neurons in cat superior colliculus. Brain Res. 1986;365:350–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meredith MA, Nemitz JW, Stein BE. Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J Neurosci. 1987;7:3215–29.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rochat P. The self as phenotype. Conscious Cogn. 2011;20:109–19.

    PubMed 
    Article 

    Google Scholar
     

  • Bremner AJ, Lewkowicz DJ, Spence C. Multisensory development. Oxford: Oxford University Press; 2012.

  • Postmes L, Sno HN, Goedhart S, van der Stel J, Heering HD, de Haan L. Schizophrenia as a self-disorder due to perceptual incoherence. Schizophr Res. 2014;152:41–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Borda JP, Sass LA. Phenomenology and neurobiology of self disorder in schizophrenia: primary factors. Schizophr Res. 2015;169:464–73. https://doi.org/10.1016/j.schres.2015.09.024.

    Article 
    PubMed 

    Google Scholar
     

  • Lalanne L, van Assche M, Giersch A. When predictive mechanisms go wrong: disordered visual synchrony thresholds in schizophrenia. Schizophr Bull. 2012;38:506–13.

    PubMed 
    Article 

    Google Scholar
     

  • Giersch A, Poncelet PE, Capa RL, Martin B, Duval CZ, Curzietti M, et al. Disruption of information processing in schizophrenia: The time perspective. Schizophr Res Cogn. 2015;2:78–83.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Giersch A. The illusions of time. Springer; 2019.

  • Andreasen NC. A unitary model of schizophrenia: Bleuler’s “fragmented phrene” as schizencephaly. Arch Gen Psychiatry. 1999;56:781–7. https://doi.org/10.1001/archpsyc.56.9.781.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fenner B, Cooper N, Romei V, Hughes G. Individual differences in sensory integration predict differences in time perception and individual levels of schizotypy. Conscious Cogn. 2020;84:102979.

    PubMed 
    Article 

    Google Scholar
     

  • Owen M, Sawa A. Mortensen pb. Schizophrenia Lancet. 2016;388:86–97.

    PubMed 
    Article 

    Google Scholar
     

  • Bitanihirwe BK, Mauney SA, Woo TU. Weaving a net of neurobiological mechanisms in Schizophrenia and unraveling the underlying pathophysiology. Biol Psychiatry. 2016;80:589–98.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Birnbaum R, Weinberger DR. Genetic insights into the neurodevelopmental origins of schizophrenia. Nat Rev Neurosci. 2017;18:727–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bowie CR, Bell MD, Fiszdon JM, Johannesen JK, Lindenmayer JP, McGurk SR, et al. Cognitive remediation for schizophrenia: An expert working group white paper on core techniques. Schizophr Res. 2020;215:49–53.

    PubMed 
    Article 

    Google Scholar
     

  • Wood L, Williams C, Billings J, Johnson S. A systematic review and meta-analysis of cognitive behavioural informed psychological interventions for psychiatric inpatients with psychosis. Schizophr Res. 2020;222:133–44.

    PubMed 
    Article 

    Google Scholar
     

  • Barber S, Thornicroft G. Reducing the mortality gap in people with severe mental disorders: the role of lifestyle psychosocial interventions. Front Psychiatry. 2018;9:463.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Burr D, Banks MS, Morrone MC. Auditory dominance over vision in the perception of interval duration. Exp Brain Res. 2009;198:49–57.

    PubMed 
    Article 

    Google Scholar
     

  • Gori M, Sandini G, Burr D. Development of visuo-auditory integration in space and time. Front Integr Neurosci. 2012;6:77.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McGovern DP, Astle AT, Clavin SL, Newell FN. Task-specific transfer of perceptual learning across sensory modalities. Curr Biol. 2016;26:R20–R21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bratzke D, Seifried T, Ulrich R. Perceptual learning in temporal discrimination: asymmetric cross-modal transfer from audition to vision. Exp Brain Res. 2012;221:205–10.

    PubMed 
    Article 

    Google Scholar
     

  • Nagarajan SS, Blake DT, Wright BA, Byl N, Merzenich MM. Practice-related improvements in somatosensory interval discrimination are temporally specific but generalize across skin location, hemisphere, and modality. J Neurosci. 1998;18:1559–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bidelman GM. Musicians have enhanced audiovisual multisensory binding: experience-dependent effects in the double-flash illusion. Exp Brain Res. 2016;234:3037–47.

    PubMed 
    Article 

    Google Scholar
     

  • Powers AR 3rd, Hillock AR, Wallace MT. Perceptual training narrows the temporal window of multisensory binding. J Neurosci. 2009;29:12265–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Van der Burg E, Goodbourn PT. Rapid, generalized adaptation to asynchronous audiovisual speech. Proc Biol Sci. 2015;282:20143083.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stevenson RA, Wilson MM, Powers AR, Wallace MT. The effects of visual training on multisensory temporal processing. Exp Brain Res. 2013;225:479–89.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Powers AR 3rd, Hevey MA, Wallace MT. Neural correlates of multisensory perceptual learning. J Neurosci. 2012;32:6263–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vroomen J, Keetels M, de Gelder B, Bertelson P. Recalibration of temporal order perception by exposure to audio-visual asynchrony. Brain Res Cogn Brain Res. 2004;22:32–35.

    PubMed 
    Article 

    Google Scholar
     

  • Roseboom W, Linares D, Nishida S. Adaptation reveals mechanisms for enhanced representation of common and novel temporal relationships. Procedia Soc Behav Sci. 2014;126:71.

    Article 

    Google Scholar
     

  • Machulla TK, Di Luca M, Froehlich E, Ernst MO. Multisensory simultaneity recalibration: storage of the aftereffect in the absence of counterevidence. Exp Brain Res. 2012;217:89–97.

    PubMed 
    Article 

    Google Scholar
     

  • Noppeney U, Lee HL. Causal inference and temporal predictions in audiovisual perception of speech and music. Ann N. Y Acad Sci. 2018. https://doi.org/10.1111/nyas.13615.

  • Zhou HY, Cheung EFC, Chan RCK. Audiovisual temporal integration: cognitive processing, neural mechanisms, developmental trajectory and potential interventions. Neuropsychologia. 2020;140:107396.

    PubMed 
    Article 

    Google Scholar
     

  • Christensen H, Griffiths K, Evans K. e-Mental health in Australia: implications of the Internet and related technologies for policy. Commonwealth Department of Health and Ageing Canberra; 2002.

  • Lal S, Adair CE. E-mental health: a rapid review of the literature. Psychiatr Serv. 2014;65:24–32.

    PubMed 
    Article 

    Google Scholar
     

  • Ben-Zeev D, Buck B, Kopelovich S, Meller S. A technology-assisted life of recovery from psychosis. NPJ Schizophr. 2019;5:15.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mohr DC, Burns MN, Schueller SM, Clarke G, Klinkman M. Behavioral intervention technologies: evidence review and recommendations for future research in mental health. Gen Hosp Psychiatry. 2013;35:332–8.

    PubMed 
    Article 

    Google Scholar
     

  • Bell IH, Alvarez-Jimenez M. Digital technology to enhance clinical care of early psychosis. Curr Treat Options Psychiatry. 2019;6:256–70.

    Article 

    Google Scholar
     

  • Moritz S, Mahlke CI, Westermann S, Ruppelt F, Lysaker PH, Bock T, et al. Embracing psychosis: a cognitive insight intervention improves personal narratives and meaning-making in patients with Schizophrenia. Schizophr Bull. 2018;44:307–16.

    PubMed 
    Article 

    Google Scholar
     

  • Lindenmayer JP, McGurk SR, Khan A, Kaushik S, Thanju A, Hoffman L, et al. Improving social cognition in schizophrenia: a pilot intervention combining computerized social cognition training with cognitive remediation. Schizophr Bull. 2013;39:507–17.

    PubMed 
    Article 

    Google Scholar
     

  • Leiserson CE, Thompson NC, Emer JS, Kuszmaul BC, Lampson BW, Sanchez D, et al. There’s plenty of room at the top: What will drive computer performance after Moore’s law? Science. 2020 https://doi.org/10.1126/science.aam9744.

  • Stevenson RA, Wallace MT. Multisensory temporal integration: task and stimulus dependencies. Exp Brain Res. 2013;227:249–61.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Inuggi A, Tonelli A, Gori M. 2021 IEEE international symposium on medical measurements and applications (MeMeA). IEEE; 2021. https://doi.org/10.1109/MeMeA52024.2021.

  • Domenici N, Inuggi A, Tonelli A, Gori M. 2021 43rd annual international conference of the IEEE engineering in medicine & biology society (EMBC). IEEE. 2021. https://doi.org/10.1109/EMBC46164.2021.

  • Rosenthal O, Shimojo S, Shams L. Sound-induced flash illusion is resistant to feedback training. Brain Topogr. 2009;21:185–92.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Matthews WJ, Meck WH. Time perception: the bad news and the good. Wiley Interdiscip Rev Cogn Sci. 2014;5:429–46.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Slater M, Sanchez-vives MV. Enhancing our lives with immersive virtual rality. Front Robot AI. 2016. https://doi.org/10.3389/frobt.2016.00074.

  • Kilteni K, Groten R, Slater M. The sense of embodiment in virtual reality. Presence: Teleoperators Virtual Environ. 2012;21:373–87.

    Article 

    Google Scholar
     

  • Servotte J-C, Goosse M, Campbell SH, Dardenne N, Pilote B, Simoneau IL, et al. Virtual reality experience: Immersion, sense of presence, and cybersickness. Clin Simul Nurs. 2020;38:35–43.

    Article 

    Google Scholar
     

  • Haggard P. Sense of agency in the human brain. Nat Rev Neurosci. 2017;18:196–207.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Slater M, Perez-Marcos D, Ehrsson HH, Sanchez-Vives MV. Inducing illusory ownership of a virtual body. Front Neurosci. 2009;3:214–20. https://doi.org/10.3389/neuro.01.029.2009.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stetson C, Cui X, Montague PR, Eagleman DM. Motor-sensory recalibration leads to an illusory reversal of action and sensation. Neuron. 2006;51:651–9. https://doi.org/10.1016/j.neuron.2006.08.006.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Synofzik M, Thier P, Leube DT, Schlotterbeck P, Lindner A. Misattributions of agency in schizophrenia are based on imprecise predictions about the sensory consequences of one’s actions. Brain. 2009;133:262–71.

    PubMed 
    Article 

    Google Scholar
     

  • Rossetti I, Romano D, Florio V, Doria S, Nisticò V, Conca A, et al. Defective embodiment of alien hand uncovers altered sensorimotor integration in Schizophrenia. Schizophr Bull. 2020;46:294–302.

    PubMed 

    Google Scholar
     

  • Werner JD, Trapp K, Wustenberg T, Voss M. Self-attribution bias during continuous action-effect monitoring in patients with schizophrenia. Schizophr Res. 2014;152:33–40.

    PubMed 
    Article 

    Google Scholar
     

  • Landgraf S, Krebs MO, Olié JP, Committeri G, van der Meer E, Berthoz A, et al. Real world referencing and schizophrenia: are we experiencing the same reality? Neuropsychologia. 2010;48:2922–30.

    PubMed 
    Article 

    Google Scholar
     

  • Rohde M, Ernst MO. Time, agency, and sensory feedback delays during action. Curr Opin Behav Sci. 2016;8:193–9.

    Article 

    Google Scholar
     

  • Lallart E, Lallart X, Jouvent R. Agency, the sense of presence, and schizophrenia. Cyberpsychol Behav. 2009;12:139–45.

    PubMed 
    Article 

    Google Scholar
     

  • Davidson L. Recovering a sense of self in schizophrenia. J Pers. 2020;88:122–32.

    PubMed 
    Article 

    Google Scholar
     

  • Bisso E, Signorelli MS, Milazzo M, Maglia M, Polosa R, Aguglia E, et al. Immersive virtual reality applications in Schizophrenia spectrum therapy: a systematic review. Int J Environ Res Public Health. 2020. https://doi.org/10.3390/ijerph17176111.

  • [ad_2]

    Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here